Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Br J Pharmacol ; 180(22): 2839-2845, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37846458

RESUMEN

In a physiological context, the extracellular matrix (ECM) provides an important scaffold for organs. Dysregulation of ECM in disease conditions, characterised by excess deposition of connective tissue and extracellular matrix in response to a pathological insult, is a key driver of disease progression in multiple organs. The resultant fibrosis is predominantly an irreversible process and directly contributes to, and exacerbates, dysfunction of an affected organ. This is particularly paramount in the kidney, liver, heart and lung. A hybrid Joint Meeting of NC-IUPHAR and British Pharmacological Society was held in Paris and via a webinar in November 2020, when two successive sessions were devoted to translational advances in fibrosis as a therapeutic target. On the upsurge of response to these sessions, the concept of a special themed issue on this topic emerged, and is entitled Translational Advances in Fibrosis as a Therapeutic Target. In this special issue, we seek to provide an up-to-date account of the diverse molecular mechanisms and causal role that fibrosis plays in disease progression (contributing to, and exacerbating, dysfunction of affected organs). Recent developments in the understanding of molecular targets involved in fibrosis, and how their actions can be manipulated therapeutically, are included. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.


Asunto(s)
Matriz Extracelular , Corazón , Humanos , Fibrosis , Progresión de la Enfermedad
2.
iScience ; 26(10): 107759, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736052

RESUMEN

Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.

3.
Lancet Reg Health West Pac ; 33: 100692, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37181530

RESUMEN

Background: Sodium glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RAs) reduce major adverse cardiovascular events (MACE) in people with type 2 diabetes (T2D). Despite known sex differences in diabetes-induced cardiovascular disease (CVD), pharmacological treatment recommendations are independent of sex. Our objective was to investigate possible sex differences in rates of MACE with SGLT2i vs. GLP-1RA use. Methods: This population-based cohort study included men and women with T2D (≥30 years), discharged from a Victorian hospital between 1st July 2013 and 1st July 2017, and dispensed an SGLT2i or GLP-1RA within 60 days of discharge. Using Cox proportional hazards regression with competing risks, subdistribution hazard ratios (sHR) with 95% confidence intervals (CI) were estimated for MACE in a follow-up to 30th June 2018. Analyses were conducted for men and women, and subgroups based on age, baseline heart failure (HF), and atherosclerotic CVD (ASCVD) status. Findings: From a total of 8026 people (44.3% women, median follow-up time = 756 days), SGLT2i (n = 4231), compared to GLP-1RAs (n = 3795), reduced MACE rates in men (sHR 0.78; 95%CI 0.66-0.93), but not women. SGLT2i reduced MACE rates in men (sHR 0.72; 95%CI 0.54-0.98) and women (sHR 0.52; 95%CI 0.31-0.86) ≥65 years; in men with baseline HF (sHR 0.45; 95%CI 0.28-0.73); and in women with ASCVD (sHR 0.36; 95%CI 0.18-0.71). Interpretations: SGLT2i, relative to GLP-1RAs, demonstrate favourable effects for MACE reductions among older Australian men and women with T2D. Analogous benefits were also observed in men with HF and women with ASCVD. Funding: Dementia Australia Yulgilbar Innovation Award.

4.
Front Physiol ; 14: 1124938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935746

RESUMEN

Growth and maturation of the fetal gastrointestinal tract near term prepares the offspring for the onset of enteral nutrition at birth. Structural and functional changes are regulated by the prepartum rise in cortisol in the fetal circulation, although the role of the coincident rise in plasma tri-iodothyronine (T3) is unknown. This study examined the effect of hypothyroidism on the structural development of the gastrointestinal tract and the activity of brush-border digestive enzymes in the ovine fetus near term. In intact fetuses studied between 100 and 144 days of gestation (dGA; term ∼145 days), plasma concentrations of T3, cortisol and gastrin; the mucosal thickness in the abomasum, duodenum, jejunum and ileum; and intestinal villus height and crypt depth increased with gestational age. Removal of the fetal thyroid gland at 105-110 dGA suppressed plasma thyroxine (T4) and T3 concentrations to the limit of assay detection in fetuses studied at 130 and 144 dGA, and decreased plasma cortisol and gastrin near term, compared to age-matched intact fetuses. Hypothyroidism was associated with reductions in the relative weights of the stomach compartments and small intestines, the outer perimeter of the intestines, the thickness of the gastric and intestinal mucosa, villus height and width, and crypt depth. The thickness of the mucosal epithelial cell layer and muscularis propria in the small intestines were not affected by gestational age or treatment. Activities of the brush border enzymes varied with gestational age in a manner that depended on the enzyme and region of the small intestines studied. In the ileum, maltase and dipeptidyl peptidase IV (DPPIV) activities were lower, and aminopeptidase N (ApN) were higher, in the hypothyroid compared to intact fetuses near term. These findings highlight the importance of thyroid hormones in the structural and functional development of the gastrointestinal tract near term, and indicate how hypothyroidism in utero may impair the transition to enteral nutrition and increase the risk of gastrointestinal disorders in the neonate.

5.
Am J Physiol Heart Circ Physiol ; 324(2): H241-H257, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607798

RESUMEN

Left ventricular (LV) dysfunction is an early, clinically detectable sign of cardiomyopathy in type 2 diabetes mellitus (T2DM) that precedes the development of symptomatic heart failure. Preclinical models of diabetic cardiomyopathy are essential to develop therapies that may prevent or delay the progression of heart failure. This study examined the molecular, structural, and functional cardiac phenotype of two rat models of T2DM induced by a high-fat diet (HFD) with a moderate- or high-sucrose content (containing 88.9 or 346 g/kg sucrose, respectively), plus administration of low-dose streptozotocin (STZ). At 8 wk of age, male Sprague-Dawley rats commenced a moderate- or high-sucrose HFD. Two weeks later, rats received low-dose STZ (35 mg/kg ip for 2 days) and remained on their respective diets. LV function was assessed by echocardiography 1 wk before end point. At 22 wk of age, blood and tissues were collected postmortem. Relative to chow-fed sham rats, diabetic rats on a moderate- or high-sucrose HFD displayed cardiac reactive oxygen species dysregulation, perivascular fibrosis, and impaired LV diastolic function. The diabetes-induced impact on LV adverse remodeling and diastolic dysfunction was more apparent when a high-sucrose HFD was superimposed on STZ. In conclusion, a high-sucrose HFD in combination with low-dose STZ produced a cardiac phenotype that more closely resembled T2DM-induced cardiomyopathy than STZ diabetic rats subjected to a moderate-sucrose HFD.NEW & NOTEWORTHY Left ventricular dysfunction and adverse remodeling were more pronounced in diabetic rats that received low-dose streptozotocin (STZ) and a high-sucrose high-fat diet (HFD) compared with those on a moderate-sucrose HFD in combination with STZ. Our findings highlight the importance of sucrose content in diet composition, particularly in preclinical studies of diabetic cardiomyopathy, and demonstrate that low-dose STZ combined with a high-sucrose HFD is an appropriate rodent model of cardiomyopathy in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Ratas , Masculino , Animales , Estreptozocina/efectos adversos , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Experimental/inducido químicamente , Ratas Sprague-Dawley , Dieta Alta en Grasa/efectos adversos , Fenotipo
6.
Trends Pharmacol Sci ; 43(11): 940-956, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35779966

RESUMEN

Patients with diabetes have an increased risk of developing heart failure, preceded by (often asymptomatic) cardiac abnormalities, collectively called diabetic cardiomyopathy (DC). Diabetic heart failure lacks effective treatment, remaining an urgent, unmet clinical need. Although structural and functional characteristics of the diabetic human heart are well defined, clinical studies lack the ability to pinpoint the specific mechanisms responsible for DC. Preclinical animal models represent a vital component for understanding disease aetiology, which is essential for the discovery of new targeted treatments for diabetes-induced heart failure. In this review, we describe the current landscape of preclinical DC models (genetic, pharmacologically induced, and diet-induced models), highlighting their strengths and weaknesses and alignment to features of the human disease. Finally, we provide tools, resources, and recommendations to assist future preclinical translation addressing this knowledge gap.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Humanos
7.
Pharmacol Ther ; 232: 108008, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34610378

RESUMEN

Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Adiponectina/metabolismo , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Humanos , Ratones , Ratones Endogámicos C57BL , Receptores de Adiponectina/metabolismo
8.
Cardiovasc Res ; 118(1): 212-225, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33576380

RESUMEN

AIMS: The glucose-driven enzymatic modification of myocardial proteins by the sugar moiety, ß-N-acetylglucosamine (O-GlcNAc), is increased in pre-clinical models of diabetes, implicating protein O-GlcNAc modification in diabetes-induced heart failure. Our aim was to specifically examine cardiac manipulation of the two regulatory enzymes of this process on the cardiac phenotype, in the presence and absence of diabetes, utilising cardiac-targeted recombinant-adeno-associated viral-vector-6 (rAAV6)-mediated gene delivery. METHODS AND RESULTS: In human myocardium, total protein O-GlcNAc modification was elevated in diabetic relative to non-diabetic patients, and correlated with left ventricular (LV) dysfunction. The impact of rAAV6-delivered O-GlcNAc transferase (rAAV6-OGT, facilitating protein O-GlcNAcylation), O-GlcNAcase (rAAV6-OGA, facilitating de-O-GlcNAcylation), and empty vector (null) were determined in non-diabetic and diabetic mice. In non-diabetic mice, rAAV6-OGT was sufficient to impair LV diastolic function and induce maladaptive cardiac remodelling, including cardiac fibrosis and increased Myh-7 and Nppa pro-hypertrophic gene expression, recapitulating characteristics of diabetic cardiomyopathy. In contrast, rAAV6-OGA (but not rAAV6-OGT) rescued LV diastolic function and adverse cardiac remodelling in diabetic mice. Molecular insights implicated impaired cardiac PI3K(p110α)-Akt signalling as a potential contributing mechanism to the detrimental consequences of rAAV6-OGT in vivo. In contrast, rAAV6-OGA preserved PI3K(p110α)-Akt signalling in diabetic mouse myocardium in vivo and prevented high glucose-induced impairments in mitochondrial respiration in human cardiomyocytes in vitro. CONCLUSION: Maladaptive protein O-GlcNAc modification is evident in human diabetic myocardium, and is a critical regulator of the diabetic heart phenotype. Selective targeting of cardiac protein O-GlcNAcylation to restore physiological O-GlcNAc balance may represent a novel therapeutic approach for diabetes-induced heart failure.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Cardiomiopatías Diabéticas/enzimología , Histona Acetiltransferasas/metabolismo , Hialuronoglucosaminidasa/metabolismo , Miocitos Cardíacos/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Disfunción Ventricular Izquierda/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Anciano , Animales , Antígenos de Neoplasias/genética , Línea Celular , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Fibrosis , Regulación de la Expresión Génica , Glicosilación , Histona Acetiltransferasas/genética , Humanos , Hialuronoglucosaminidasa/genética , Masculino , Ratones , Persona de Mediana Edad , Miocitos Cardíacos/patología , N-Acetilglucosaminiltransferasas/genética , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
10.
Front Pharmacol ; 12: 719290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690762

RESUMEN

Diabetes is a major contributor to the increasing burden of heart failure prevalence globally, at least in part due to a disease process termed diabetic cardiomyopathy. Diabetic cardiomyopathy is characterised by cardiac structural changes that are caused by chronic exposure to the diabetic milieu. These structural changes are a major cause of left ventricular (LV) wall stiffness and the development of LV dysfunction. In the current study, we investigated the therapeutic potential of a cardiac-targeted bone morphogenetic protein 7 (BMP7) gene therapy, administered once diastolic dysfunction was present, mimicking the timeframe in which clinical management of the cardiomyopathy would likely be desired. Following 18 weeks of untreated diabetes, mice were administered with a single tail-vein injection of recombinant adeno-associated viral vector (AAV), containing the BMP7 gene, or null vector. Our data demonstrated, after 8 weeks of treatment, that rAAV6-BMP7 treatment exerted beneficial effects on LV functional and structural changes. Importantly, diabetes-induced LV dysfunction was significantly attenuated by a single administration of rAAV6-BMP7. This was associated with a reduction in cardiac fibrosis, cardiomyocyte hypertrophy and cardiomyocyte apoptosis. In conclusion, BMP7 gene therapy limited pathological remodelling in the diabetic heart, conferring an improvement in cardiac function. These findings provide insight for the potential development of treatment strategies urgently needed to delay or reverse LV pathological remodelling in the diabetic heart.

12.
Front Physiol ; 12: 672252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539423

RESUMEN

People affected by diabetes are at an increased risk of developing heart failure than their non-diabetic counterparts, attributed in part to a distinct cardiac pathology termed diabetic cardiomyopathy. Mitochondrial dysfunction and excess reactive oxygen species (ROS) have been implicated in a range of diabetic complications and are a common feature of the diabetic heart. In this study, we sought to characterise impairments in mitochondrial structure and function in a recently described experimental mouse model of diabetic cardiomyopathy. Diabetes was induced in 6-week-old male FVB/N mice by the combination of three consecutive-daily injections of low-dose streptozotocin (STZ, each 55 mg/kg i.p.) and high-fat diet (42% fat from lipids) for 26 weeks. At study end, diabetic mice exhibited elevated blood glucose levels and impaired glucose tolerance, together with increases in both body weight gain and fat mass, replicating several aspects of human type 2 diabetes. The myocardial phenotype of diabetic mice included increased myocardial fibrosis and left ventricular (LV) diastolic dysfunction. Elevated LV superoxide levels were also evident. Diabetic mice exhibited a spectrum of LV mitochondrial changes, including decreased mitochondria area, increased levels of mitochondrial complex-III and complex-V protein abundance, and reduced complex-II oxygen consumption. In conclusion, these data suggest that the low-dose STZ-high fat experimental model replicates some of the mitochondrial changes seen in diabetes, and as such, this model may be useful to study treatments that target the mitochondria in diabetes.

13.
Cardiovasc Diabetol ; 20(1): 116, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074290

RESUMEN

BACKGROUND: Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart. METHODS: Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ventricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice. RESULTS: Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiography revealed reduced E:A and e':a' ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchymal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in diabetic mice. CONCLUSIONS: Murine diabetes results in distinct changes in cardiac cellularity. These changes-in particular increased levels of fibroblasts-offer a framework for understanding how cardiac cellularity changes in diabetes. The results also point to new cellular mechanisms in this context, which may further aid in development of pharmacotherapies to allay the progression of cardiomyopathy associated with diabetes.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/etiología , Fibroblastos/patología , Miocardio/patología , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Diástole , Dieta Alta en Grasa , Fibroblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Masculino , Ratones , Monocitos/metabolismo , Monocitos/patología , Miocardio/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Estreptozocina , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
14.
Thyroid ; 31(6): 861-869, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33126831

RESUMEN

Background: The fetal hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the control of parturition and maturation of organ systems in preparation for birth. In hypothyroid fetuses, gestational length may be prolonged and maturational processes delayed. The extent to which the effects of thyroid hormone deficiency in utero on the timing of fetal maturation and parturition are mediated by changes to the structure and function of the fetal HPA axis is unknown. Methods: In twin sheep pregnancies where one fetus was thyroidectomized and the other sham-operated, this study investigated the effect of hypothyroidism on circulating concentrations of adrenocorticotrophic hormone (ACTH) and cortisol, and the structure and secretory capacity of the anterior pituitary and adrenal glands. The relative population of pituitary corticotrophs and the masses of the adrenal zones were assessed by immunohistochemical and stereological techniques. Adrenal mRNA abundances of key steroidogenic enzymes and growth factors were examined by quantitative polymerase chain reaction. Results: Hypothyroidism in utero reduced plasma concentrations of ACTH and cortisol. In thyroid-deficient fetuses, the mass of corticotrophs in the anterior pituitary gland was unexpectedly increased, while the mass of the zona fasciculata and its proportion of the adrenal gland were decreased. These structural changes were associated with lower adrenocortical mRNA abundances of insulin-like growth factor (IGF)-I and its receptor, and key steroidogenic enzymes responsible for glucocorticoid synthesis. The relative mass of the adrenal medulla and its proportion of the adrenal gland were increased by thyroid hormone deficiency in utero, without any change in expression of phenylethanolamine N-methyltransferase or the IGF system. Conclusions: Thyroid hormones are important regulators of the structure and secretory capacity of the pituitary-adrenal axis before birth. In hypothyroid fetuses, low plasma cortisol may be due to impaired adrenocortical growth and steroidogenic enzyme expression, secondary to low circulating ACTH concentration. Greater corticotroph population in the anterior pituitary gland of the hypothyroid fetus indicates compensatory cell proliferation and that there may be abnormal corticotroph capacity for ACTH synthesis and/or impaired hypothalamic input. Suppression of the development of the fetal HPA axis by thyroid hormone deficiency may contribute to the delay in fetal maturation and delivery observed in hypothyroid offspring.


Asunto(s)
Corticoesteroides/metabolismo , Glándulas Suprarrenales/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Hipotiroidismo Congénito/metabolismo , Corticotrofos/metabolismo , Desarrollo Fetal/fisiología , Enfermedades Fetales/metabolismo , Tiroidectomía , Glándulas Suprarrenales/patología , Médula Suprarrenal/metabolismo , Médula Suprarrenal/patología , Animales , Recuento de Células , Proliferación Celular , Hipotiroidismo Congénito/patología , Corticotrofos/patología , Enfermedades Fetales/patología , Madurez de los Órganos Fetales , Hidrocortisona/sangre , Sistema Hipotálamo-Hipofisario/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Sistema Hipófiso-Suprarrenal/metabolismo , ARN Mensajero/metabolismo , Receptor IGF Tipo 1/genética , Ovinos , Tiroxina/deficiencia , Tiroxina/metabolismo , Triyodotironina/deficiencia , Triyodotironina/metabolismo , Zona Fascicular/metabolismo , Zona Fascicular/patología
15.
Front Physiol ; 11: 124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153425

RESUMEN

The incidence of diabetes and its association with increased cardiovascular disease risk represents a major health issue worldwide. Diabetes-induced hyperglycemia is implicated as a central driver of responses in the diabetic heart such as cardiomyocyte hypertrophy, fibrosis, and oxidative stress, termed diabetic cardiomyopathy. The onset of these responses in the setting of diabetes has not been studied to date. This study aimed to determine the time course of development of diabetic cardiomyopathy in a model of type 1 diabetes (T1D) in vivo. Diabetes was induced in 6-week-old male FVB/N mice via streptozotocin (55 mg/kg i.p. for 5 days; controls received citrate vehicle). At 2, 4, 8, 12, and 16 weeks of untreated diabetes, left ventricular (LV) function was assessed by echocardiography before post-mortem quantification of markers of LV cardiomyocyte hypertrophy, collagen deposition, DNA fragmentation, and changes in components of the hexosamine biosynthesis pathway (HBP) were assessed. Blood glucose and HbA1c levels were elevated by 2 weeks of diabetes. LV and muscle (gastrocnemius) weights were reduced from 8 weeks, whereas liver and kidney weights were increased from 2 and 4 weeks of diabetes, respectively. LV diastolic function declined with diabetes progression, demonstrated by a reduction in E/A ratio from 4 weeks of diabetes, and an increase in peak A-wave amplitude, deceleration time, and isovolumic relaxation time (IVRT) from 4-8 weeks of diabetes. Systemic and local inflammation (TNFα, IL-1ß, CD68) were increased with diabetes. The cardiomyocyte hypertrophic marker Nppa was increased from 8 weeks of diabetes while ß-myosin heavy chain was increased earlier, from 2 weeks of diabetes. LV fibrosis (picrosirius red; Ctgf and Tgf-ß gene expression) and DNA fragmentation (a marker of cardiomyocyte apoptosis) increased with diabetes progression. LV Nox2 and Cd36 expression were elevated after 16 weeks of diabetes. Markers of the LV HBP (Ogt, Oga, Gfat1/2 gene expression), and protein abundance of OGT and total O-GlcNAcylation, were increased by 16 weeks of diabetes. This is the first study to define the progression of cardiac markers contributing to the development of diabetic cardiomyopathy in a mouse model of T1D, confirming multiple pathways contribute to disease progression at various time points.

16.
Am J Physiol Heart Circ Physiol ; 318(4): H840-H852, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32142359

RESUMEN

Diabetic cardiomyopathy is a distinct form of heart disease that represents a major cause of death and disability in diabetic patients, particularly, the more prevalent type 2 diabetes patient population. In the current study, we investigated whether administration of recombinant adeno-associated viral vectors carrying a constitutively active phosphoinositide 3-kinase (PI3K)(p110α) construct (rAAV6-caPI3K) at a clinically relevant time point attenuates diabetic cardiomyopathy in a preclinical type 2 diabetes (T2D) model. T2D was induced by a combination of a high-fat diet (42% energy intake from lipid) and low-dose streptozotocin (three consecutive intraperitoneal injections of 55 mg/kg body wt), and confirmed by increased body weight, mild hyperglycemia, and impaired glucose tolerance (all P < 0.05 vs. nondiabetic mice). After 18 wk of untreated diabetes, impaired left ventricular (LV) systolic dysfunction was evident, as confirmed by reduced fractional shortening and velocity of circumferential fiber shortening (Vcfc, all P < 0.01 vs. baseline measurement). A single tail vein injection of rAAV6-caPI3K gene therapy (2×1011vector genomes) was then administered. Mice were followed for an additional 8 wk before end point. A single injection of cardiac targeted rAAV6-caPI3K attenuated diabetes-induced cardiac remodeling by limiting cardiac fibrosis (reduced interstitial and perivascular collagen deposition, P < 0.01 vs. T2D mice) and cardiomyocyte hypertrophy (reduced cardiomyocyte size and Nppa gene expression, P < 0.001 and P < 0.05 vs. T2D mice, respectively). The diabetes-induced LV systolic dysfunction was reversed with rAAV6-caPI3K, as demonstrated by improved fractional shortening and velocity of circumferential fiber shortening (all P < 0.05 vs pre-AAV measurement). This cardioprotection occurred in combination with reduced LV reactive oxygen species (P < 0.05 vs. T2D mice) and an associated decrease in markers of endoplasmic reticulum stress (reduced Grp94 and Chop, all P < 0.05 vs. T2D mice). Together, our findings demonstrate that a cardiac-selective increase in PI3K(p110α), via rAAV6-caPI3K, attenuates T2D-induced diabetic cardiomyopathy, providing proof of concept for potential translation to the clinic.NEW & NOTEWORTHY Diabetes remains a major cause of death and disability worldwide (and its resultant heart failure burden), despite current care. The lack of existing management of heart failure in the context of the poorer prognosis of concomitant diabetes represents an unmet clinical need. In the present study, we now demonstrate that delayed intervention with PI3K gene therapy (rAAV6-caPI3K), administered as a single dose in mice with preexisting type 2 diabetes, attenuates several characteristics of diabetic cardiomyopathy, including diabetes-induced impairments in cardiac remodeling, oxidative stress, and function. Our discovery here contributes to the previous body of work, suggesting the cardioprotective effects of PI3K(p110α) could be a novel therapeutic approach to reduce the progression to heart failure and death in diabetes-affected patients.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/terapia , Terapia Genética/métodos , Animales , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/etiología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico , Fibrosis , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Masculino , Ratones , Miocardio/metabolismo , Especies Reactivas de Oxígeno , Remodelación Ventricular
17.
Thyroid ; 30(6): 794-805, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32070265

RESUMEN

Background: Development of adipose tissue before birth is essential for energy storage and thermoregulation in the neonate and for cardiometabolic health in later life. Thyroid hormones are important regulators of growth and maturation in fetal tissues. Offspring hypothyroid in utero are poorly adapted to regulate body temperature at birth and are at risk of becoming obese and insulin resistant in childhood. The mechanisms by which thyroid hormones regulate the growth and development of adipose tissue in the fetus, however, are unclear. Methods: This study examined the structure, transcriptome, and protein expression of perirenal adipose tissue (PAT) in a fetal sheep model of thyroid hormone deficiency during late gestation. Proportions of unilocular (UL) (white) and multilocular (ML) (brown) adipocytes, and UL adipocyte size, were assessed by histological and stereological techniques. Changes to the adipose transcriptome were investigated by RNA sequencing and bioinformatic analysis, and proteins of interest were quantified by Western blotting. Results: Hypothyroidism in utero resulted in elevated plasma insulin and leptin concentrations and overgrowth of PAT in the fetus, specifically due to hyperplasia and hypertrophy of UL adipocytes with no change in ML adipocyte mass. RNA sequencing and genomic analyses showed that thyroid deficiency affected 34% of the genes identified in fetal adipose tissue. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathways were associated with adipogenic, metabolic, and thermoregulatory processes, insulin resistance, and a range of endocrine and adipocytokine signaling pathways. Adipose protein levels of signaling molecules, including phosphorylated S6-kinase (pS6K), glucose transporter isoform 4 (GLUT4), and peroxisome proliferator-activated receptor γ (PPARγ), were increased by fetal hypothyroidism. Fetal thyroid deficiency decreased uncoupling protein 1 (UCP1) protein and mRNA content, and UCP1 thermogenic capacity without any change in ML adipocyte mass. Conclusions: Growth and development of adipose tissue before birth is sensitive to thyroid hormone status in utero. Changes to the adipose transcriptome and phenotype observed in the hypothyroid fetus may have consequences for neonatal survival and the risk of obesity and metabolic dysfunction in later life.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Hipotiroidismo Congénito/metabolismo , Termogénesis/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Insulina/sangre , Leptina/sangre , PPAR gamma/metabolismo , Ovinos , Transducción de Señal/fisiología , Transcriptoma , Proteína Desacopladora 1/metabolismo
19.
Front Physiol ; 10: 1395, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798462

RESUMEN

The increasing burden of heart failure globally can be partly attributed to the increased prevalence of diabetes, and the subsequent development of a distinct form of heart failure known as diabetic cardiomyopathy. Despite this, effective treatment options have remained elusive, due partly to the lack of an experimental model that adequately mimics human disease. In the current study, we combined three consecutive daily injections of low-dose streptozotocin with high-fat diet, in order to recapitulate the long-term complications of diabetes, with a specific focus on the diabetic heart. At 26 weeks of diabetes, several metabolic changes were observed including elevated blood glucose, glycated haemoglobin, plasma insulin and plasma C-peptide. Further analysis of organs commonly affected by diabetes revealed diabetic nephropathy, underlined by renal functional and structural abnormalities, as well as progressive liver damage. In addition, this protocol led to robust left ventricular diastolic dysfunction at 26 weeks with preserved systolic function, a key characteristic of patients with type 2 diabetes-induced cardiomyopathy. These observations corresponded with cardiac structural changes, namely an increase in myocardial fibrosis, as well as activation of several cardiac signalling pathways previously implicated in disease progression. It is hoped that development of an appropriate model will help to understand some the pathophysiological mechanisms underlying the accelerated progression of diabetic complications, leading ultimately to more efficacious treatment options.

20.
Cardiovasc Drugs Ther ; 33(6): 669-674, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31654171

RESUMEN

PURPOSE: Methylglyoxal, a by-product of glycolysis and a precursor in the formation of advanced glycation end-products, is significantly elevated in the diabetic myocardium. Therefore, we sought to investigate the mitochondria-targeted methylglyoxal scavenger, MitoGamide, in an experimental model of spontaneous diabetic cardiomyopathy. METHODS: Male 6-week-old Akita or wild type mice received daily oral gavage of MitoGamide or vehicle for 10 weeks. Several morphological and systemic parameters were assessed, as well as cardiac function by echocardiography. RESULTS: Akita mice were smaller in size than wild type counterparts in terms of body weight and tibial length. Akita mice exhibited elevated blood glucose and glycated haemoglobin. Total heart and individual ventricles were all smaller in Akita mice. None of the aforementioned parameters was impacted by MitoGamide treatment. Echocardiographic analysis confirmed that cardiac dimensions were smaller in Akita hearts. Diastolic dysfunction was evident in Akita mice, and notably, MitoGamide treatment preferentially improved several of these markers, including e'/a' ratio and E/e' ratio. CONCLUSIONS: Our findings suggest that MitoGamide, a novel mitochondria-targeted approach, offers cardioprotection in experimental diabetes and therefore may offer therapeutic potential for the treatment of cardiomyopathy in patients with diabetes.


Asunto(s)
Amidas/farmacología , Benzamidas/farmacología , Cardiotónicos/farmacología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Difenilamina/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Piruvaldehído/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Animales , Benzamidas/uso terapéutico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Insulina/genética , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...